Towards Detecting Anomalous User Behavior in Online Social Networks
نویسندگان
چکیده
Users increasingly rely on crowdsourced information, such as reviews on Yelp and Amazon, and liked posts and ads on Facebook. This has led to a market for blackhat promotion techniques via fake (e.g., Sybil) and compromised accounts, and collusion networks. Existing approaches to detect such behavior relies mostly on supervised (or semi-supervised) learning over known (or hypothesized) attacks. They are unable to detect attacks missed by the operator while labeling, or when the attacker changes strategy. We propose using unsupervised anomaly detection techniques over user behavior to distinguish potentially bad behavior from normal behavior. We present a technique based on Principal Component Analysis (PCA) that models the behavior of normal users accurately and identifies significant deviations from it as anomalous. We experimentally validate that normal user behavior (e.g., categories of Facebook pages liked by a user, rate of like activity, etc.) is contained within a low-dimensional subspace amenable to the PCA technique. We demonstrate the practicality and effectiveness of our approach using extensive ground-truth data from Facebook: we successfully detect diverse attacker strategies—fake, compromised, and colluding Facebook identities—with no a priori labeling while maintaining low false-positive rates. Finally, we apply our approach to detect click-spam in Facebook ads and find that a surprisingly large fraction of clicks are from anomalous users.
منابع مشابه
Knowledge Sharing Behavior Model of Iranian Professionals in experts’ social networks: exploring indexes
Background and Aim: Due to the extensive use of knowledge intelligence, the future of countries depend on the application of specialized knowledge-based social networks. Thus, it is noteworthy to highlight the important role of the professionals. The key indicators of a model for knowledge sharing of Iranian experts, in experts’ social networks has been identified. Methods: For this purpose, ex...
متن کاملA CSA Method for Assigning Client to Servers in Online Social Networks
This paper deals with the problem of user-server assignment in online social network systems. Online social network applications such as Facebook, Twitter, or Instagram are built on an infrastructure of servers that enables them to communicate with each other. A key factor that determines the facility of communication between the users and the servers is the Expected Transmission Time (ETT). A ...
متن کاملAnalysis and Evaluation of Privacy Protection Behavior and Information Disclosure Concerns in Online Social Networks
Online Social Networks (OSN) becomes the largest infrastructure for social interactions like: making relationship, sharing personal experiences and service delivery. Nowadays social networks have been widely welcomed by people. Most of the researches about managing privacy protection within social networks sites (SNS), observes users as owner of their information. However, individuals cannot co...
متن کاملAnalyzing the Effectiveness of Graph Metrics for Anomaly Detection in Online Social Networks
Online social networks can be modelled as graphs; in this paper, we analyze the use of graph metrics for identifying users with anomalous relationships to other users. A framework is proposed for analyzing the effectiveness of various graph theoretic properties such as the number of neighbouring nodes and edges, betweenness centrality, and community cohesiveness in detecting anomalous users. Ex...
متن کاملThe Role of Online Social Networks in Users' Everyday-Life Information Seeking
Background and Aim: Considering the increasing number of users who interact with online social networks, it can be inferred that these networks have become an essential part of users' lives and play different roles in their everyday life. Therefore, the present study aims to explore the role of these networks in users' everyday-life information seeking. Method: This research is an applied resea...
متن کامل